Loading...

Giải bài tập Hình học 9: Ôn tập chương IV

Thứ ba - 03/09/2019 05:33

Giải bài tập Hình học 9: Ôn tập chương IV : Tóm tắt kiến thức, ví dụ, hướng dẫn giải bài tập trong sách giáo khoa và bài tập luyện thêm.

Loading...
A. Tóm tắt kiến thức (trang 128 SGK)
B. Ví dụ
Cho tam giác đều ABC cạnh 6cm, đường cao AH. Quay nửa đường tròn nội tiếp, nửa đường tròn ngoại tiếp và nửa tam giác đều này một vòng quanh AH.
a) Tính tỉ số diện tích của hai mặt cầu nội tiếp và ngoại tiếp hình nón.
b) Tính tỉ số thể tích của hai hình cầu.
c) Tính thể tích phần không gian giới hạn bởi hình nón và hình cầu nội tiếp.
 
Giải (h. 172)
a) Gọi r và R lần lượt là bán kính đường tròn nội tiếp, đường tròn ngoại tiếp
tam giác đều ABC.
Dễ thấy R = 2r.
Ta có BC = 6cm do đó HC = 3 (cm).
AH =  = 3  (cm).
Do đó r = OH =   (cm); R = OA = 2  (cm).
Tỉ số diện tích hai mặt cầu là :
 =  =  =
h172

b) Tỉ số thể tích của hai hình cầu là :
 =  =  =

c) Thể tích hình nón là :
V3 = HC2.AH = .π .32.3  = 9  π  (cm3).
Thể tích phần không gian giới hạn bởi hình nón và hình cầu nội tiếp là :
V = V3 - V1 = 9   - | . ( )3 = 5 (cm3).

Nhận xét: Từ bài toán trên ta thấy :
- Tỉ số diện tích của hai mặt cầu bằng bình phương tỉ số của hai bán kính.
- Tỉ số thể tích của hai hình cầu bằng lập phương tỉ số của hai bán kính.

C. Hướng dẫn giải bài tập trong sách giáo khoa
38. Giải (h.173)
Chi tiết máy gồm hai hình trụ, một hình trụ có bán kính đáy 5,5cm, chiểu cao 2cm và một hình trụ có bán kính đáy 3cm, chiều cao 7cm.
Thể tích của chi tiết máy là :
V = (5,5)2.2 +  .32.7 = 123,5  388 (cm3).
Diện tích xung quanh của hai hình trụ là :
S1 .11.2 +  .6.7 = 64  (cm2).
Tổng diện tích các mặt đáy ngoài còn lại là :
S2 .(5,5)2 (5,52 – 32) +  .32 = 60,5  (cm2).
Diện tích bề mặt của chi tiết máy là :
S = 64  + 60,5  = 124,5  (cm2)  391 cm2.
h173
 
39. Giải (h. 174)
Ta đặt AB = x1 và AD = x2 (x1 > x2).
x1 + x2 = 3a
Khi đó thì:
Vậy x1, x2 là hai nghiệm của phương trình
x2 - 3ax + 2a2 = 0.
Giải ra ta được x1 = 2a ; x2 = a.
Khi quay hình chữ nhật quanh AB thì được một hình trụ có chiều cao là 2a ; có bán kính đáy là a.
Do đó Sxq = 2 Rh = 2 a.2a = 4 a2.
V = R2h = .a2.2a = 2 a3.
 
h174

40. Đáp số: 20,25  (cm2); 30,24 (cm2).
 
41. Giải (h. 175)
a) Xét AOC và BDO có :  =   = 90o,
  =   (hai góc có cạnh tương ứng vuông góc).
Do đó  AOC   BDO (g.g)
 =  AC.BD = OA.OB = a.b (không đổi).
h175

b) Xét AOC vuông tại A, ta có
AC = OA.tg60o = a  (cm).
Xét BOD vuông tại B, ta có BD = OBtg30o = (cm).
Diện tích hình thang ABCD là :
S = (AC + BD).AB = (a + b)  =  (3a2 + 4ab + b2) (cm2)

c) Khi quay hình vẽ quanh AB thì AOC tạo ra một hình nón có bán kính đáy AC = a  và chiều cao OA = a. Tam giác BOD tạo ra một hình nón có bán kính đáy BD =  và chiều cao OB = b. .
Tỉ số thể tích của hai hình nón là :  =  =

42. Hướng dẫn
a) Tính tổng thể tích của hình nón với hình trụ.
Đáp số: 416,5 (cm3)  1307,81 (cm3).

b) Tính hiệu thể tích của hai hình nón.
Đáp số: 867,54(cm3).

43. Đáp số: a) 500,094 cm3 ; b) 536,400 cm3 ; c)  cm3
 
44. Giải (h. 176)
Vì bán kính đường tròn ngoại tiếp hình vuông là R nên độ dài cạnh hình vuông là R , độ dài cạnh tam giác đều là R . Đường cao của tam giác đều là        =
h176
a) Thể tích hình trụ sinh ra bởi hình vuông là:
V1 = . R  =
Thể tích của hình cầu sinh ra bởi hình tròn là :
V2 = R3
Thể tích của hình nón sinh ra bởi tam giác đều là :
V3 = .  = R3
Ta có:  =  =  (1)
V2.V3 = R3. R3 =  (2)
Từ (1) và (2) suy ra   = V2.V3  .

b) Học sinh tự giải.

45. Đáp số:
a) R3cm3 ;    b) 2 R3cm3 ;    c) R3cm3   d) R3cm3
e) Thể tích hình nón nội tiếp trong một hình trụ bằng hiệu giữa thể tích hình trụ và thể tích hình cầu nội tiếp hình trụ ấy.

Nhận xét: Hình nón, hình cầu cùng nội tiếp một hình trụ có quan hệ về thể tích như sau :
Vnón =  Vtrụ; Vcầu =  Vtrụ
Từ kết quả này ta suy ra ngay kết quả ở câu e).

D. Bài tập luyện thêm

1. Một hình cầu nội tiếp một hình trụ. Biết diện tích toàn phần của hình trụ là 120cm2. Hãy tính :
a) Diện tích mặt cầu.
b) Thể tích hình trụ.

2. Cho tam giác đều ABC, đường cao AH. Quay tam giác đều này một vòng quanh AH ta được một hình nón. Chứng minh rằng diện tích toàn phần của hình nón bằng diện tích mặt cầu đường kính AH.

3. Cho tam giác ABC vuông tại A, AB = 30cm, AC = 40cm. Quay tam giác vuông này một vòng quanh cạnh huyền BC.
Hãy tính :
a) Diện tích toàn phần của hình được tạo thành.
b) Thể tích của hình được tạo thành.

Hướng dẫn - Đáp số
 
1. (h.177).
Gọi R là bán kính đáy của hình trụ thì chiều cao của hình trụ là 2R. Bán kính hình cầu nội tiếp là R.
Diện tích toàn phần của hình trụ là :
Stp = 2 Rh + 2 R2 = 6 R2.
Ta có: 6 R2 = 120cm2 R2 = 20cm2.
Diện tích mặt cầu là : s = 4 R2 = 80cm2.
h177
b) Ta có R =  =  (cm)
Thể tích hình trụ là :
V = R2h = R2.2R = 20.2.   =  (cm3)
 
2. (h.178)
Ta đặt AC = 2a thì HC = a ; AH = a  .
Stpnón = rl + r2 = a.2a + a2 = 3 a2
Scầu = 4 R2 = 4 = 3 a2
Vậy Stpnón = Scầu
h178
 
3. (h.179)
a) Vẽ đường cao AH.
b) Áp dụng hệ thức lượng trong tam giác vuông ta tính được:
BC = 50cm ; AH = 24cm.
Khi quay tam giác ABC quanh cạnh BC thì hình tạo thành gồm hai hình nón chung đáy, bán kính đáy là AH = 24cm và có các chiều cao lần lượt là BH và CH.
Diện tích toàn phần của hình được tạo thành là :
S = .AH.AB + .AH.AC = .24(30 + 40) = 1680 (cm2).
h179

b) Thể tích của hình được tạo thành là :
V = . .AH2.BH + . .AH2.CH
=   .  242.(BH + CH)
=   . .242.50 = 9600  (cm3).
© Bản quyền thuộc về Bài kiểm tra. Ghi rõ nguồn Bài kiểm tra.com khi sao chép nội dung này.
Loading...

Tổng số điểm của bài viết là: 5 trong 1 đánh giá

Xếp hạng: 5 - 1 phiếu bầu
Click để đánh giá bài viết

  Ý kiến bạn đọc

Mã bảo mật   

Những tin mới hơn

Những tin cũ hơn

Bạn đã không sử dụng Site, Bấm vào đây để duy trì trạng thái đăng nhập. Thời gian chờ: 60 giây