Loading...

Giải bài tập Toán 9, chương IV, bài 5: Công thức nghiệm thu gọn.

Thứ bảy - 24/08/2019 05:41

Giải bài tập Toán 9, chương IV, bài 5: Công thức nghiệm thu gọn: Tóm tắt kiến thức, ví dụ, hướng dẫn giải bài tập trong sách giáo khoa và bài tập luyện thêm.

Loading...
A. Tóm tắt kiến thức
Nếu đặt b = 2b’ thì  = 4b2 - 4ac - 4(b2 - ac).
Đặt  = b’2 - ac, ta có thể nói về nghiệm của phương trình bậc hai theo  như sau:
Đối với phương trình bậc hai ax2 + bx + c = 0, với b = 2b’, đặt  = b2 - ac ta có các kết luận sau :
- Nếu  > 0 thì phương trình có hai nghiệm phân biệt :
x1 =  ; x2 =  

- Nếu  = 0 thì phương trình có nghiệm kép
x1 = x2 =

- Nếu  < 0 thì phương trình vô nghiệm.

Lưu ý. Đối với các phương trình bậc hai có hệ số b là một số chẩn hoặc có dạng 2B, với B là một biểu thức nào đó thì việc dùng  để giải phương trình rất thuận lợi.

B. Ví dụ
Ví dụ 1. Giải phương trình :
a) 5x2 + 8x - 2 = 0 ;                   b) 3x2 - 6 x + 2 = 0 ;
c) 2x2 + 2 x + 1 = 0 ;            d) 4x2 - 2x + 3 = 0.

Giải. a) Ta có b’ = 4,  = 42 - 5.(-2) = 26 > 0.
  =  . Phương trình có hai nghiệm phân biệt:
x1 =  ; x2 =  

b) Ta có b’ = -3 ,  = (-3)2 - 3.2 = 18 – 6 = 12
  =   = 2  
x1 =  =   ; x2 =  

c) Ta có: b’= ,  = ()2 – 2.1 = 2 – 2 = 0
Phương trình có nghiệm kép :
x1 = x2 =
d) Ta có b’ = -1,  = (-1)2 - 4.3 = 1 - 12 = -11 < 0.
Phương trình vô nghiệm.

Ví dụ 2. Không vẽ đồ thị, hãy tìm giao điểm của các cặp đồ thị sau :
a) y = 3x2 và y = 4x - 1 ;
b) y = 2 x2 và y = 2 x - 1.
Phân tích. Vì giao điểm của hai đồ thị thuộc cả hai đồ thị nên khi hai đồ thị cắt nhau giá trị của hai hàm số bằng nhau.

Giải. Vì giao điểm của hai đồ thị thuộc cả hai đồ thị nên khi hai đồ thị cắt nhau là khi: 3x2 = 4x - 1 hay 3x2 - 4x + 1 = 0.
Giải phương trình này ta tìm được x, tức là hoành độ của giao điểm.
= 22 - 3.1 = 1.
 = 1.
Phương trình có hai nghiệm :
x1 =  = 1; x2 =  =

b) Giải phương trình 2 x2 = 2 x  - 1 hay 2 x2 - 2 x   + 1 = 0.
b’ = ,  = ()2 - 2.1 = 3 - 2 = 2 - 2.1+1 = ( - 1)2
  =  =  – 1
x1 =  =  , x1 =  =  

Ví dụ 3. Tìm giá trị của m để phương trình 3mx2 - 2(m + 2)x + m - 1 = 0.
a) Có nghiệm kép.
b) Có một nghiệm là x = 2. Khi đó phương trình có mấy nghiệm ? Hãy tìm tất cả các nghiệm của phương trình.

Giải.
a) Trước hết m  2.   = (m + 2)2 - 3m.(m - 1) = m2 + 4m + 4 - 3m2 + 3m = -2m2 + 7m + 4.
Phương trình có nghiệm kép khi  = -2m2 + 7m + 4 = 0.
Coi m là ẩn số ta giải phương trình
-2m2 + 7m + 4 = 0.        (*)
Để tránh nhầm lẫn, ta kí hiệu biệt thức của phương trình (*) bởi Am.
Ta có: m = 72 - 4.(-2).4 = 49 + 32 = 81.
 = 9 > 0
Do đó có hai giá trị phân biệt của m :
m1 =  = , m1 =  = 4
Vậy phương trình có nghiệm kép khi m =  hoặc khi m = 4.

b) Phương trình có một nghiệm là x = 2 khi :
3m.22 - 2(m + 2).2 + m - 1 = 0
hay 12m - 4m - 8 + m - 1 = 0
hay 9m - 9 = 0.
Vậy phương trình có nghiệm là x = 2 khi m = 1.
Khi m = 1 thì phương trình đã cho trở thành :
3.1 .x2 - 2( 1 + 2)x +1 - 1= 0 hay 3x2 - 6x = 0. (**)
Giải phương trình (**) :
3x2 - 6x = 0 3x(x -2) = 0 x = 0 hoặc x-2 = 0 x = 0 hoặc x = 2.
Vậy phương trình có hai nghiệm là x = 2 và x = 0.

C. Hướng dẫn giải bài tập trong sách giáo khoa

17. Giải: a) a = 4, b’ = 2, c = 1 .' = 22 - 4.1 = 0.
Phương trình có nghiệm kép : x1 = x2 =  =

b) a = 13852, b’ = -7, c = 1. Ta có : ' = (-7)2 - 13852.1 = 49 - 13852 < 0.
Phương trình vô nghiệm.

c) a = 5, b’ = -3, c = 1. Ta có : ' = (-3)2 - 5.1 = 9 - 5 = 4.
' = 2.
x1  =  = 1 ; x2  =  =  

d) a = -3, b’ = 2 , c = 4. Ta có : '  = (2 )2 - (-3).4 = 24+ 12= 36.
'  = 6.
x1 =  =  , x2 =  =  

18. Đáp số: a) x1  1,82; x2 =   -1,82
b) x1 =   1,41, x2 =   0,47

c) Vô nghiệm ;

d) x1 =   4,56, x2 =   0,44

19. Trả lời: Ta có ax2 + bx + c = a-  = a -
Nếu phương trình ax2 + bx + c = 0 vô nghiệm thì  < 0. Suy ra: -  > 0
Vì a > 0 nên ax2 + bx + c = a -  > 0, với mọi giá trị của x.

20. Đáp số: a) x =  ; b) Vô nghiệm ; c) x1 = 0, x2 = -1,3 ;
d) Giải. 4x2 - 2x = 1 -   4x2 - 2x  +   -1 = 0.
' = (-)2 – 4.( – 1) =  ()2 - 4 + 4 = ()2 – 2.2. + 22 = (2-)2
' = 2 -
x1 =  =  ; x2 =  =

21. Đáp số :
a) x1 = 24, x1 = -12.
b) x1 = 12, x2 = -19.

22. Trả lời :
Có hai nghiệm phân biệt vì a và c trái dấu.
Có hai nghiệm phân biệt vì cùng một lí do trên.

23. Trả lời :
a) Khi t = 5 phút thì v = 60km/h.
b) Khi v = 120km/h thì t1  9,47 phút, t2  0,53 phút.

24. Trả lời : a) ' = -2m + 1.
b) Phương trình có hai nghiệm phân biệt khi m <
Phương trình có nghiệm kép khi m =        .
Phương trình vô nghiệm khi m >     .

D. Bài tập luyện thêm

1. Giải phương trình :
a) 2x2 - 4x + 1 = 3x - 2 ; b) 5x2 + 3x - 1 = 3 - 5x.

2. Giải phương trình :
a) x2 + x + 1 = 3 - x  ;          b) 2x2  + x  - 1 =  x2 -  x  + 3.

3. Cho phương trình (m - 3)x2 + 2mx - (m - 1) - 0.
a) Chứng tỏ rằng phương trình này luôn luôn có nghiệm.
b) Khi nào thì phương trình có hai nghiệm phân biệt ?
c) Khi nào thì phương trình chỉ có một nghiệm ? Nếu có hãy tìm nghiệm duy nhất ấy.
d) Phương trình có thể có nghiệm kép được không ?

4. Một thửa đất hình chữ nhật có chiều dài lớn hơn chiều rộng 2m. Tính kích thước của thửa đất này biết rằng diện tích của nó là 360m .

5. Khi cầu thủ đá trái bóng, độ cao của trái bóng so với mặt đất được xác định bởi công thức :
h = -t2 + 6t + 1
trong đó độ cao h tính bằng m, t tính bằng giây.
a) Tính độ cao của trái bóng khi t = 2 giây.
b) Ở những thời điểm nào thì trái bóng ở độ cao 6m ?

Hướng dẫn - Đáp số

1. Đáp số:
a) x1 =3, x2 = ;    b) x1 = , x2 = - 2.

2. Giải:  a) x2 + x + 1 = 3 - x  x2 + 2x – 2 = 0
' = ()2 + 2 = 3 + 2
x1 =  ; x2 =  

b) 2x2  + x  - 1 =  x2 -  x  + 3  x2  + 2x  - 4 = 0
' = ()2 + 4 = 7 + 2.2. = 4 + 2.2. + 3 = (2+)2
x1 =   =   ; x2 =   =   

3. Phân tích. Muốn dùng biệt thức  để lập luận về nghiệm của phương trình thì
phương trình đó phải là phương trình bậc hai. Khi đó a = m - 3  0.
Vì đầu bài không cho biết giá trị của m nên cần xét các trường hợp : m - 3 = 0 và m - 3 0.

Giải. a) - Nếu m = 3 thì phương trình đã cho trở thành phương trình bậc nhất 6x - 2 = 0. Phương trình có nghiệm là x =
- Nếu m  3 thì phương trình đã cho là một phương trình bậc hai.
' = m2 + (m - 3)(m - 1) = m2 + m2 - 4m + 3
= 2m2 - 4m + 3 = 2m2 - 4m + 2+1
= 2(m2 - 2m + 1) + 1 = 2(m - 1)2 + 1 > 0.
Do đó phương trình có hai nghiệm phân biệt.
Vậy dù m = 3 hay m  3, phương trình đã cho luôn luôn có nghiệm.

b) Qua phần lập luận trên đây, ta thấy phương trình có hai nghiệm phân biệt khi m 3.

c) Phương trình có một nghiệm khi m = 3 và nghiệm đó là x = .

d) Phương trình không thể có nghiệm kép vì khi nó là phương trình bậc hai, tức là khi m  3 thì ' > 0.

4. Giải. Gọi chiều rộng của thửa đất là x (m), x > 0, thì chiều dài của thửa đất là : x + 2 (m).
Diện tích của thửa đất là : x(x + 2) = x2 + 2x (m2).
Theo đầu bài: x2 + 2x = 360 hay x2 + 2x - 360 = 0.
Giải phương trình :
' = 1 + 360 = 361.
' = 19.
x1 = = 18, x2 = -1 - 19 = -20.
Vì x > 0 nên chỉ có giá trị x1 = 18, thoả mãn điều kiện của ẩn.
Vậy chiều rộng của thửa đất là : 18m ;
Chiều dài của thửa đất là : 18 + 2 = 20(m).

5. Trả lời: a) 9m ;    b) Khi t = 1 giây hoặc khi t = 5 giây.
© Bản quyền thuộc về Bài kiểm tra. Ghi rõ nguồn Bài kiểm tra.com khi sao chép nội dung này.
Loading...

Tổng số điểm của bài viết là: 0 trong 0 đánh giá

Click để đánh giá bài viết

  Ý kiến bạn đọc

Mã bảo mật   

Những tin mới hơn

Những tin cũ hơn

Bạn đã không sử dụng Site, Bấm vào đây để duy trì trạng thái đăng nhập. Thời gian chờ: 60 giây